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ABSTRACT
Plants are exposed to a large number of pathogenic fungi. Although they do not have an immune system, plant
have evolved a variety of potent defense mechanisms, including the synthesis of low molecular weight compounds,
proteins, and peptides that have antifungal activity. These proteins appear to be involved in either constitutive or
induced resistance to fungal attack. Generally, these proteins are not race- or species specific and have a broad
spectrum of activity including: the inhibition of fungal cell wall synthesis or the disruption of cell wall structure, and/
or function as well as other disorders of the fungal membrane structure resulting in fungal cell lysis. This review is
a compilation of the main pathogen defense related proteins and peptides.
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RESUMEN
Proteínas y péptidos para el control de hongos fitopatógenos. Las plantas tienen varios mecanismos de
defensa inherentes como son la producción de proteínas relacionadas con la defensa, las cuales actúan para limitar
la infección de los hongos patógenos. Estas proteínas están involucradas tanto en la resistencia constitutiva como
inducida por el ataque del patógeno. Generalmente no son raza o especie específica y tienen un amplio espectro
de actividad como inhibición de la síntesis de las paredes celulares del hongo o la ruptura de la estructura y/o
función de la pared, otras perturban la estructura de membrana del hongo, resultando en la lisis de la célula del
hongo. En este artículo se hace una recopilación de las principales proteínas y péptidos que tienen actividad
antifúngica y sus modos de acción.
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Introduction
Plants have their own networks of defense against
pathogens that include a vast array of proteins and
other organic molecules produced prior to infection or
during pathogen attack. Not all pathogens can attack
all plants and a single plant is not susceptible to the
whole plethora of plant pathogenic fungi, viruses,
bacteria or nematodes.

Recombinant DNA technology allows the enhan-
cement of inherent plant responses against a pathogen
by either using single dominant resistance genes not
normally present in the susceptible plant [1] or by
choosing plant genes that intensify or trigger the ex-
pressions of existing defense mechanisms [2]. The
expression of cloned genes in transgenic plants has
provided evidence on plant defense [3]. The genes
encoding many antifungal proteins are currently being
used to create genetically modified plants that have
increased fungal resistance in the field [4]. Generally,
these proteins are not race-or species-specific and
have a broad spectrum of activity. The identification
of such proteins would lead to the isolation of genes
that have a great potential in developing transgenic
plants with disease resistance traits [5]

These proteins appear to be involved in either cons-
titutive or induced resistance to fungal attack. There
are hundreds of antifungal peptides and proteins
known, with more being discovered almost daily. Some
of these proteins are: pathogenesis-related proteins,
(PR), defensins, ribosome-inactivating proteins (RIP),
lipid-transfer proteins (LTP), killer proteins, protease
inhibitors, etc. These proteins have been named pri-
marily on the basis of their mechanism of action, their

structure or their similarity to a known “type” pro-
tein. Several classes of antifungal proteins involve
the inhibition of fungal cell wall synthesis or cell wall
structure and/or function disruption while others
derange fungal membrane structure, resulting in fungal
cell lysis. Additionally, the plants have others indu-
cible defense mechanisms such as lignification, the
production of peroxidase, salicylic acid, ethylene and
hypersensitive reaction that act to limit pathogen
infection [6].

Pathogenesis-related proteins
(PR proteins)
PR proteins are a group of diverse proteins whose ac-
cumulation is triggered by a pathogen attack, an abiotic
stress, during hypersensitive response (HR) and also
during systemic acquired resistance (SAR). These are
therefore thought to have a role in natural defense or
plant resistance to pathogens.

In a sense, PR proteins are an intersection point of
various response networks by reacting with different
inducers such as salicylic acid, jasmonic acid, systemin
and ethylene. In theory, the constitutive expression
of PR proteins, either singly or combined, may confer
a decreased susceptibility to a specific group of pa-
thogens [7].

These proteins have been classically divided into
five groups, PR-1, PR- 2, PR-3, PR-4 and PR-5, ba-
sed on serological and amino acid sequence analysis.
Recently, another 6 groups of proteins have been
suggested for their inclusion as PR proteins, forming a
total of 11 groups [8]. Each of the five classical groups
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of PR proteins has two subclasses: a basic subclass
found in the plant cell vacuole and an acidic subclass
usually found in the extra cellular space [9]. Each group
has members with antifungal activity, and cognates of
most groups have been found in a diversity of other
organisms. The antifungal action mechanisms of only
the PR-2 and PR-3 groups of proteins have been clearly
identified [10].

PR-1 proteins
These are proteins of low molecular weight (15-17 kDa).
They have been found in rice, wheat, maize, tobacco,
Arabidopsis  thaliana, barley and many other plants
[11-15]. They are homologous to the super family of
cysteine-rich proteins. Although the exact mechanism
of antifungal activity is not understood for plant PR-1
proteins, the constitutive expression of the PR1A gene
in tobacco enhances plant resistance to Peronospora
tabacina [16]. A PR-1 like protein, helothermine, from
the Mexican banded lizard interacted with membrane-
channel proteins of target cells, inhibiting the release of
Ca2+ [17]. Whether the antifungal plant PR-1 proteins
use this mechanism or not is unknown but suspected.

PR-2 proteins (β-glucanases)
PR-2 proteins have 1,3 β-endoglucanase activity in
vitro and have been grouped into three classes on the
basis of amino acid sequence analysis [18]. They have
molecular masses between 33 and 36 kDa. PR-2
proteins have been found in a wide variety of plants,
including tobacco, Arabidopsis  thaliana ,  peas,
sorghum, grains and fruits [19-22], and they are active
in vitro at micro molar levels against a wide number of
fungi. The antifungal activity of PR-2 has been
convincingly demonstrated by a number of in vitro
enzyme and whole-cell assays [23] as well as in planta
using transgenic plants with an over expression of
PR-2 proteins [24]. The antifungal activity of plant
(1,3) β glucanases is thought to occur by PR-2 proteins
hydrolyzing the structural (1,3) β glucan present in
the fugal cell wall, particularly at the hyphal apex of
filamentous molds where glucan is most highly
exposed, resulting in a weak cell wall. This weakened
cell wall results in cell lysis and cell death.

PR-3 proteins (chitinases)
PR-3 proteins have in vitro chitinase activity. Most
PR-3 proteins have molecular masses of between 26
and 43 kDa and have been divided into five groups
(Class I- Class V). Chitinases have been isolated from
fungi [25], tobacco [26], cucumber, beans [27], grains
[28] and other plants [29], and bacteria [30].They have
potent antifungal activity against a wide variety of
human and plant pathogens. By analogy with β-glu-
canases, the mode of action of PR-3 proteins is relatively
straightforward: PR-3 proteins are endo-chitinases that
cleave cell wall chitin polymers in situ, resulting in a
weakened cell wall and rendering osmotically sensitive
fungal cells [4]. A few transgenic crop species expressing
chitinases have been evaluated in field trials and it was
demonstrated that disease incidence was reduced [31].
There are a fewer examples of the expres-sion of
chitinases in transgenic plants but the results have
generally been similar to those for glucanase expression.
The combined expression of chitinase and glucanase in

transgenic carrot, tomato and tobacco was much more
effective in disease prevention due to a number of
pathogens than either one alone [32], con-firming the
synergistic activity of these two enzymes reported
from in vitro studies [31].

PR-4 proteins
PR-4 proteins are chitin-binding proteins, having mo-
lecular masses of 13-14 kDa and have been classified
into two groups (Class I and Class II) [33]. PR-4
proteins have been isolated from potato, tobacco, bar-
ley, tomato, and many other plants [34-37]. Both classes
of proteins have potent antifungal activity against a
wide variety of pathogens. The antifungal activity of
class I proteins is likely the result of protein binding to
nascent fungal cell wall β-chitin. By mechanisms not
yet understood this results in disrupted cell polarity,
with a concomitant inhibition of growth [38].

PR-5 proteins
PR-5 proteins share a significant amino acid homology
to thaumatin (a protein isolated from Thaumatococcus
danielli) and are known as TL proteins. TL proteins
have been isolated from A. thaliana [39], corn [28],
soy beans, rice, wheat, tobacco [40], tomato [41] and
many others [42]. The majority of PR-5 proteins
have molecular masses of ~ 22 kDa. Osmotin is a
basic 24 kDa protein belonging to this family having
antifungal activity in vitro [43] and showing enhanced
lytic activity when tested in combination with
chitinase and β -glucanase [44]. Thaumatin-like
proteins are also expressed in plants in response to a
range of stress conditions and were demonstrated to
have antifungal activity in vitro [40]. The exact me-
chanism of action of PR-5 proteins is not completely
understood but it probably produces the lysis of the
pathogen by permeabilizing the fungal cell wall [43].

Many PR proteins may be acting synergistically in
vivo and may also show enhanced inhibition of fungal
growth when tested in combinations in vitro [45].

As a general rule, the deployment of genetic engi-
neering approaches that involve the expression of two
or more antifungal gene products in a specific crop
should provide more effective and broad-spectrum
disease control than the single-gene strategy [31].

Defensins and thionins
Another group of antimicrobial activities are defensins
and thionins. These are low molecular mass (~ 5 kDa),
cysteine-rich peptides (45-54 amino acids in length)
found in monocotyledonous and dicotyledonous plant
species [46, 47], in mammals, fungi [48] and insects
[49]. These peptides may exert antifungal activity by
altering fungal membrane permeability and (or) inhibiting
macromolecule biosynthesis. Plant and fungal defensines
are positively charged, and in most cases contain four
disulfide bonds that stabilized each protein in solution
[50, 51]. In addition, most defensins are highly oli-
gomeric in situ [52]. Defensins are classified into four
groups (Group I-Group IV). In contrast to mammalian
and insect defensins, plant defensins do not form
channels either in artificial bilayers or in artificial lipo-
somes [53] and they do not show significant hyphal
permeabilization activity [54]. The over expression of
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defensins in transgenic plants was demonstrated with
several different pathogens, including Alternaria [55],
Fusarium  [56] and they provided resistance to
Verticillium in potatoes under field conditions [57]. The
expression of the α-thionin gene from barley in tobacco
confers enhanced resistance to bacterial pathogens [58].
The over expression of an endogenous thionin enhances
resistance in Arabidopsis  against Fusarium oxysporum
[56]. One of the best studied defensins is Rs-AFP2
(Raphanus sativus antifungal protein-2). Transgenic
tobacco plants producing Rs-AFP-2 show enhanced
resistance to the foliar pathogen Alternaria longipes
[46]. Similarly, alfAFP (alfalfa antifungal peptide), a
gene for cysteine-rich defensin from alfalfa seeds, when
expressed under the control of a 35S promoter in trans-
genic potatoes imparted resistance to Verticillium
dahliae, Alternaria solani y Fusarium culmorum, but
not to Phytophtora infestans [57].

On the other hand, hevein, a non enzymatic chitin-
binding protein of 43 amino acids from the latex of
rubber trees, is cystein-rich and its precursor, a pre-
protein homologous to the tobacco PR4 protein [45]
was shown to have antifungal activity in vitro [59].
An agglutinin (UDA) isolated and characterized from
Urtica  dioica  is another chitin-binding protein
homologous to hevein and has two chitin-binding
domains. Hevein and UDA are the only two chiting-
binding plant lectins which have been shown to inhibit
fungal growth in vitro. Transgenic tomato plants
expressing the hevein gene showed fewer symptoms
in slides of transgenic tomato fruits compared to
controls when infected with Trichoderma hamatum
[60]. The antifungal effects of hevein from rubber
plants (Hevea brasiliensis) enhanced the resistance
of transgenic plants to Alternaria brassicae [61].
However, the expression of Amaranthus hevein-type
peptide and Mirabilis  knottin-type peptide in
transgenic tobacco did not enhance tolerance to
Alternaria longipes  or Botrytis cinerea [62].

Plant ribosome inactivating proteins (RIP)
These are plant enzymes that have 28 rRNA N-gly-
cosidase activity, which, depending on their specificity,
can inactivate conspecific or foreign ribosomes, thereby
turning off protein synthesis. They remove an adenine
residue from 28S rRNA. As a result, the 60S ribosomal
subunit is not able to bind the elongation factor 2,
producing the inhibition of protein elongation [63].
Plant RIPs inactivate foreign ribosomes of distantly
related species and of other eukaryotes including fungi
in vitro and in vivo [64]. RIPs have been classified into
three groups and have been isolated from Mirabilis
expansa  [65], Pisum  sativum  [26], Momardica
charantia [66], Ricinus communis  [67], Viscum album,
and many others [68], as well as from fungi, e.g.,
Aspergillus giganteus [69]. Unfortunately, the an-
tifungal activities of only a few of the many RIPs have
been described.

The most common cystolic type I RIP from the
endosperm of cereal grains do not act on plant
ribosomes but can affect foreign ribosomes, such as
those of fungi [70]. The expression of barley seed RIP
reduced the development of Rhizoctonia solani in
transgenic tobacco [71], but had little effect on Blume-
ria graminis  in transgenic wheat [72]. It has been

demonstrated that the combined expression of chitinase
and RIP in transgenic tobacco had a more inhibitory
effect on Rhizoctonia solana than the individual
proteins. Resistance levels improved when RIP was
used combined with either PR2 or PR3 [24].

Recent studies with a type 2 RIP showed that the
cell-binding B-chain (lectin) binds to fungal cells,
forming a channel allowing the N-glycosidase A-chain
to enter into the cells, resulting in RNA damage [73].

Lipid transfer proteins (LTP)
These proteins are so named because of their ability
to stimulate the transfer of a broad range of lipids
through the membrane in vitro and may also be
involved in the secretion or deposition of extra cellular
lipophilic materials such as cutin or wax. LTPs are
small proteins (~ 8.7 kDa) of ~ 90 amino acids that
are stabilized by four disulfide bonds with a central
tunnel-like hydrophobic cavity. They have been iso-
lated from a number of sources, including mammals,
plants, fungi and bacteria [74-76]. LTPs are active in
vitro against a number of bacteria and fungi although
the mechanism of action is not known. These pro-
teins may perhaps insert themselves into the fungal
cell membrane, and the central hydrophobic cavity
could form a pore, allowing the efflux of intracellular
ions, leading to fungal cell death [4]. The facts show
that several LTPs in maize, barley and pepper leaves
were induced by pathogen infection [77], and some
LTP isoforms in radish and sugar beet were found to
inhibit the growth of bacterial and fungal pathogens
in vitro  [78]. Recent studies demonstrated that
LTP110, a cDNA sequence encoding lipid transfer
protein in rice seedlings, is able to inhibit the growth
of Pyricularia oryzae in vitro [79].

Polygalacturonase inhibitor proteins (PGIPs)
These glycoproteins are present in the cell wall of many
plants and can inhibit the activity of fungal endo-
polygalacturonase [80]. PGIPs have been identified in
extracts of several plants including pears, tomatoes
and beans [81, 82]. It is presumed that polygalac-
turonases function in pathogen infection by facilitating
host cell wall degradation and PGIPs interfere with
this process [63]. The expression of PGIPs in transgenic
plants led to contrasting results: in transgenic tomatoes
expressing a bean PGIP, resistance to Fusarium, Bo-
trytis, or Alternaria was not enhanced [80] while in
transgenic tomatoes expressing a pear PGIP, there was
a reduced colonization of Botrytis cinerea, which was
observed as reduced number of lesions and a 25%
reduction in the size of the lesions as well as a reduced
post-harvest infection on fruits [83].

2S Storage albumins
Although 2S albumins are generally considered stora-
ge proteins, these are known to inhibit the growth of
pathogenic fungi. Terras et al. [52] showed that a
14 kDa heterodimeric 2S albumin from Brassicaceae
seeds inhibit fungal growth in vitro. Furthermore,
thionin anti fungal activity was synergistically enhan-
ced by either a small subunit (4 kDa) or a large subunit
(10 kDa) of the radish 2S-albumin and also by three
other 2S-albumin like proteins. These results suggest a
dual role for 2S albumins, one as storage proteins and
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another in plant defense, although definite evidence
for this can be only obtained producing transgenic
plants with these genes [62].

Cyclophilin-like protein
Cyclophilins are a highly conserved group of proteins
that are the intracellular receptors for cyclosporine.
They have been found in a wide variety of organisms,
including bacteria, plants, animals and fungi [84].
Recently a 1 kDa protein was isolated from mung
bean (Phaseolus mungo) with an activity against R.
solani , F. oxysporum , B. cinerea  and Coprinus
comatus [27]. This protein, called mungin, showed
significant homology to cyclophilin and inhibited α
and β-glucosidases in vitro. However, the antifungal
mechanism of action of mungin is not known.

Protease inhibitors
Protein inhibitors of serine (e.g., trypsin and chymo-
trypsin) and cysteine proteases have emerged as a
class of antifungal proteins that have a potent activity
against plant and animal pathogens. Cysteine protease
inhibitors have been isolated from a fourth group of
cystatins, the phytocystatins [85, 86]. Although phy-
tocystatins are active against plant pathogens such as
F. solani and Trichoderma reesei [87], the mechanism
of antifungal activity is not understood.

Serine protease inhibitors that have antifungal
activity also have the interesting property of inhi-
biting α-amylase activity from insects but not from
bacteria or mammalian sources [88]. These proteins
are bifunctional, inhibiting enzymes as well as insect
and fungal growth. Other bifunctional proteins from
ragi (Eleusine coracana), wheat and barley have been
isolated and characterized [89]. The mechanism of
the antifungal activity of these proteins is not fully
understood.

Non-plant antifungal proteins
Fungal growth is inhibited in vitro by cell wall degrading
enzymes, mostly chitinases, from various fungi. Some
of these chitinases show synergy with PR5 proteins
or other membrane affecting compounds and other
fungal cell wall hydrolases [44]. An exochitinase gene

from bacterium Serretia marcescens, when expressed
in transgenic tobacco, renders the host plants less
susceptible to R. solani [90]. A fungal chitinase gene
from Rhizopus oligosporus confers antifungal activity
to transgenic tobacco [91].

Killer proteins (killer toxins)
A number of yeasts secreted proteins are lethal to
sensitive fungal cells. These proteins, called killer
proteins or killer toxins, are encoded either by double-
stranded RNA, linear double-stranded plasmid DNA,
or nuclear genes [92]. Fungal cells secreting a killer
toxin are resistant to their own toxin but are sensitive
to other toxins. Over 20 individual killer toxins have
been identified, varying in molecular mass from 10.7
to 156.5 kDa [93, 94]. The killer toxins have a broad,
potent antifungal activity against a number of human
and plant pathogens. Although they vary in their
mechanisms of action, the first step of killer proteins
activity involves binding the protein to specific cell
surface receptors. Once bound, killer proteins are
internalized and can disrupt cell wall synthesis, DNA
synthesis, and K+ channel activity, inhibit (1,3)
β-glucan synthesis, or arrest the cell cycle.

Concluding
Plants have several inherent inducible defense me-
chanisms such as: PR proteins, defensins, thionins,
RIPs, LTPs and many others, that limit pathogen
infection and are produced to protect them against
microbial attack. The mechanisms of action of these
proteins are as varied as their sources and include fungal
cell wall polymer degradation, membrane channel and
pore formation, damage to cellular ribosomes, inhibition
of DNA synthesis, and inhibition of the cell cycle.

Recombinant DNA technology allows the de-
ployment of genetic engineering approaches that
involve the expression of two or more antifungal gene
products in a specific crop that should provide more
effective and a broader-spectrum in disease control
than the single-gene strategy. The genes encoding many
antifungal proteins are currently being used by
agribusiness to create genetically modified plants that
have increased fungal resistance in the field.
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